
Calorimeter Waveform Processing Module

Timothy Rinn

September 2022

Abstract

This internal note discusses the basics and implementation of the
calorimeter waveform processing module. The module is designed to be
passed the measured waveform for any number of channels and returns the
amplitude, time and pedestal information for each channel. The current
implementation enables both traditional template fitting and onnx model
processing, though additional functionality can be added down the road.

Contents
1 Code Location 2

2 Module Use 2
2.1 Basic description . 2
2.2 Initialization . 2

2.2.1 set_processing_type . 2
2.2.2 set_template_file . 3
2.2.3 set_model_file . 3
2.2.4 set_nthreads . 3

2.3 Processing waveforms . 3

3 ONNX wrapper 4

1

1 Code Location
The key piece of code discussed in this note is located at:
https://github.com/sPHENIX-Collaboration/coresoftware/tree/master/
offlineoffline/packages/CaloReco/CaloWaveformProcessing.cc (.h)

The relevant wrapper function for the implementation of onnx within this
framework can be found at:
https://github.com/sPHENIX-Collaboration/coresoftware/tree/master/
offline/framework/phool/onnxlib.C (.h)

2 Module Use

2.1 Basic description
The module is designed to act as an interface between the user (reconstruction
code) and the various waveform processing algorithms. By default, after initial-
ization, it is designed to be passed a vector of vectors of floats, where the outer
vector corresponds to a list of channels (arbitrary size) and the inner vector
corresponds to the waveform for a given channel. It then returns a vector of
vectors, in the same order, containing the extracted amplitude, arrival time,
and pedestal value.

2.2 Initialization
During the init stages of a Fun4All module one must initialize the waveform
fitting module with the desired parameters. Below find listed some of the key
commands that can be used to constrain the behavior of the module. The effect
of these commands is summarized in the following sub-subsections.

1. set_processing_type(CaloWaveformProcessing::process)

2. set_template_file(const std::string)

3. set_model_file(const std::string)

4. set_nthreads(int)

If these commands are not set by the user the module will default to utilizing
template fitting in single threaded mode using templates produced from test
beam data.

After setting the parameters for the module one simply needs to initialize
the module by calling initialize_processing(). This will cause the module to
load the relevant files and prepare for signal processing.

2.2.1 set_processing_type

This command is designed to allow the user to specify the method which they
would like to use to process the waveform. As of writing the module is designed

2

for both a multithreaded template fitting procedure as well as using ONNX
models. These can be selected by passing the following arguments:

• Template Fitting: CaloWaveformProcessing::TEMPLATE

• ONNX Models: CaloWaveformProcessing::ONNX

The ONNX interface is behind the scenes controlled by an ONNX wrapper
which interfaces with the ONNX package. This is described in section 3.

2.2.2 set_template_file

This command is designed to allow the user to specify a file in the calibrations
repository to be read in for use in the template fitting. By default the module
will load the current template file from the conditions database.

2.2.3 set_model_file

This command is designed to allow the user to specify a file in the calibrations
repository to be read in for use in ONNX processing. By default the module
will load the current ONNX file from the conditions database.

2.2.4 set_nthreads

This command controls the number of threads to use during the multi threaded
template fitting procedure. By default the module operates in single threaded
mode, however any number of threads can be used. Through testing on
sPHENIX fully occupied production hardware it was seen that beyond 4 threads
no time benefit was gained by increasing the number of threads further. Though
this may change based on the types of jobs running, it is a fair rule of thumb.

2.3 Processing waveforms
The waveform processing itself should get called during the process_event stage
of a Fun4All module. The interface at this stage is quite simple and controlled
by a single call.

• process_waveform(std::vector< std::vector<float> >)

This call takes as argument a vector of vectors of floats, with the outer vector
consisting of any number of channels the user desires to process in a batch and
the inner vector consisting of the waveforms for each of those vectors. This
enables flexibility in how the module is implemented into a respective Fun4All
code as it permits individual calls for each channel or batching of the entire
24,576 channels of the EMCal into a single operation.

These waveforms are packaged and passed to the corresponding processing
methods as defined during the initialization stage (I.E. template fitting or ONNX
model). These methods characterize the waveform into simply 3 parameters:
pulse amplitude over pedestal, pulse time, and pedestal.

3

Finally, the function returns a std::vector < std::vector <float > > where
each entry in the outer vector corresponds to the same channel as was passed
to the module and the inner vector contains (in order) the extracted amplitude,
pulse time, and pedestal. In the future, additional parameters may be appended
to this vector to provide quantification of fit quality.

3 ONNX wrapper
In order to process ONNX models in a convenient manner a simple wrapper is
used. These can be found at:
https://github.com/sPHENIX-Collaboration/coresoftware/blob/master/offline/
framework/phool/onnxlib.cc (.h) The wrapper contains two main pieces of func-
tionality, an initialization method and a processing method.

1. onnxSession(std::string &modelfile)

2. onnxInference(Ort::Session *session,std::vector<float> &input, int N,
int Nsamp, int Nreturn)

The onnxSession method simply loads in the ONNX model from a provided file
name and initializes the onnx session accordingly.

The onnxInference method gets passed the session initialized in the first
command as well as a vector of waveforms (&input), the number of channels
being processed (N) in a batch, the number of samples per waveform (Nsamp),
as well as the number of return parameters returned by the model (Nreturn).
This parses the information into a format that ONNX needs and processes the
waveforms accordingly.

4

